在临床工作流程中成功部署AI的计算机辅助诊断(CAD)系统的一个主要障碍是它们缺乏透明决策。虽然常用可解释的AI方法提供了一些对不透明算法的洞察力,但除了高度训练的专家外,这种解释通常是复杂的,而不是易于理解的。关于皮肤病图像的皮肤病病变恶性的决定的解释需要特别清晰,因为潜在的医疗问题定义本身是模棱两可的。这项工作提出了exaid(可解释的ai用于皮肤科),是生物医学图像分析的新框架,提供了由易于理解的文本解释组成的多模态概念的解释,该概念由可视地图证明预测的视觉映射。 Exap依赖于概念激活向量,将人类概念映射到潜在空间中的任意深度学习模型学习的人,以及概念本地化地图,以突出输入空间中的概念。然后,这种相关概念的识别将用于构建由概念 - 明智地点信息补充的细粒度文本解释,以提供全面和相干的多模态解释。所有信息都在诊断界面中全面呈现,用于临床常规。教育模式为数据和模型探索提供数据集级别解释统计和工具,以帮助医学研究和教育。通过严谨的exaid定量和定性评估,即使在错误的预测情况下,我们展示了CAD辅助情景的多模态解释的效用。我们认为突然将为皮肤科医生提供一种有效的筛查工具,他们都理解和信任。此外,它将是其他生物医学成像领域的类似应用的基础。
translated by 谷歌翻译
最近,已经提出了几种领域的概括(DG)方法,表现出令人鼓舞的性能,但是,几乎所有的都基于卷积神经网络(CNN)。研究视觉变压器(VIT)的DG性能(VIT)几乎没有进展,这挑战了CNN在标准基准测试基准上的至高无上,通常是基于I.I.D假设。这使VITS的现实部署令人怀疑。在本文中,我们试图探索解决DG问题的VIT。与CNN类似,VIT在分发场景中也挣扎,主要的罪魁祸首过于适合来源域。受VIT的模块化体系结构的启发,我们提出了一种简单的DG方法,用于VIT,以VIT的自我验证。它通过策划中间变压器块的非零熵监管信号来减少输入输出映射问题的学习来减少源域的过度拟合。此外,它不会引入任何新参数,并且可以无缝地插入不同VIT的模块化组成中。我们在五个具有挑战性的数据集中以不同的DG基准和各种VIT骨架表现出显着的性能提高。此外,我们报告了针对最近最新的DG方法的有利性能。我们的代码以及预培训的模型可在以下网址公开获取:https://github.com/maryam089/sdvit
translated by 谷歌翻译
来自多模态输入的人类学习效益通常出现为丰富语义(例如,在学习IT时描述对象的属性)。这使我们能够从非常有限的视觉示例中学习广泛的概念。但是,目前的少量学习(FSL)方法使用数值类标签来表示不提供关于学习概念的丰富语义含义的对象类。在这项工作中,我们表明,通过使用“类级”语言描述,可以以最少的注释成本获取,我们可以提高FSL性能。鉴于支持集和查询,我们的主要思想是创建一个瓶颈视觉特征(混合原型),然后用于在训练期间将类的语言描述作为辅助任务。我们开发基于转换器的前向和后向编码机制,以涉及可以编码两个模式之间的复杂关系的视觉和语义令牌。强迫原型来保留关于类描述的语义信息,作​​为视觉特征上的常规器,在推理时提高他们的新类别的概括。此外,该策略在学习的陈述之前强加了人类,确保该模型忠实地与视觉和语义概念相关联,从而提高了模型解释性。我们对四个数据集和消融研究的实验表明了有效地建模丰富的FSL语义。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is considered one of the primary concerns due to its effect on vision loss among most people with diabetes globally. The severity of DR is mostly comprehended manually by ophthalmologists from fundus photography-based retina images. This paper deals with an automated understanding of the severity stages of DR. In the literature, researchers have focused on this automation using traditional machine learning-based algorithms and convolutional architectures. However, the past works hardly focused on essential parts of the retinal image to improve the model performance. In this paper, we adopt transformer-based learning models to capture the crucial features of retinal images to understand DR severity better. We work with ensembling image transformers, where we adopt four models, namely ViT (Vision Transformer), BEiT (Bidirectional Encoder representation for image Transformer), CaiT (Class-Attention in Image Transformers), and DeiT (Data efficient image Transformers), to infer the degree of DR severity from fundus photographs. For experiments, we used the publicly available APTOS-2019 blindness detection dataset, where the performances of the transformer-based models were quite encouraging.
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Adversarial training is an effective approach to make deep neural networks robust against adversarial attacks. Recently, different adversarial training defenses are proposed that not only maintain a high clean accuracy but also show significant robustness against popular and well studied adversarial attacks such as PGD. High adversarial robustness can also arise if an attack fails to find adversarial gradient directions, a phenomenon known as `gradient masking'. In this work, we analyse the effect of label smoothing on adversarial training as one of the potential causes of gradient masking. We then develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA). Our attack approach is based on a `match and deceive' loss that finds optimal adversarial directions through guidance from a surrogate model. Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size. Furthermore, our proposed G-PGA is generic, thus it can be combined with an ensemble attack strategy as we demonstrate for the case of Auto-Attack, leading to efficiency and convergence speed improvements. More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
translated by 谷歌翻译
Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
In recent years distributional reinforcement learning has produced many state of the art results. Increasingly sample efficient Distributional algorithms for the discrete action domain have been developed over time that vary primarily in the way they parameterize their approximations of value distributions, and how they quantify the differences between those distributions. In this work we transfer three of the most well-known and successful of those algorithms (QR-DQN, IQN and FQF) to the continuous action domain by extending two powerful actor-critic algorithms (TD3 and SAC) with distributional critics. We investigate whether the relative performance of the methods for the discrete action space translates to the continuous case. To that end we compare them empirically on the pybullet implementations of a set of continuous control tasks. Our results indicate qualitative invariance regarding the number and placement of distributional atoms in the deterministic, continuous action setting.
translated by 谷歌翻译
Automated synthesis of histology images has several potential applications in computational pathology. However, no existing method can generate realistic tissue images with a bespoke cellular layout or user-defined histology parameters. In this work, we propose a novel framework called SynCLay (Synthesis from Cellular Layouts) that can construct realistic and high-quality histology images from user-defined cellular layouts along with annotated cellular boundaries. Tissue image generation based on bespoke cellular layouts through the proposed framework allows users to generate different histological patterns from arbitrary topological arrangement of different types of cells. SynCLay generated synthetic images can be helpful in studying the role of different types of cells present in the tumor microenvironmet. Additionally, they can assist in balancing the distribution of cellular counts in tissue images for designing accurate cellular composition predictors by minimizing the effects of data imbalance. We train SynCLay in an adversarial manner and integrate a nuclear segmentation and classification model in its training to refine nuclear structures and generate nuclear masks in conjunction with synthetic images. During inference, we combine the model with another parametric model for generating colon images and associated cellular counts as annotations given the grade of differentiation and cell densities of different cells. We assess the generated images quantitatively and report on feedback from trained pathologists who assigned realism scores to a set of images generated by the framework. The average realism score across all pathologists for synthetic images was as high as that for the real images. We also show that augmenting limited real data with the synthetic data generated by our framework can significantly boost prediction performance of the cellular composition prediction task.
translated by 谷歌翻译